Tsallis relative entropy Econometrics to balancing an ecological social accounting matrix of Poland(SAM)2005

Conference on econophysics Warsaw 25-27 Nov 2010

By S. BWANAKARE, WSIZ w Rzeszowie

Contents

- I. On the generalised linear pure inverse problems
- II. Maximum entropy principle to solving linear pure inverse problems
- III. Cross entropy principle
- IV.Tsallis relative entropy extensions
- V. A SAM as a Walrasian equilibrium framework
- VI. Outputs
- VII. Concluding remarks
- Annex

I.On the generalised pure inverse problems solution

- The question set up in this presentation is the one of generalised pure inverse problem solution.
- The quintessence of the inverse problem
- is conveyed by the expression :
- (1) y=BX(+e).
- Then, given a state X and operator B, what is y.

- Often one must cope with random (gaussian or not) noise or shocks or innovation, denoted above by e. In social science analyses, this usually complicates matters. But recent development in classical econometrics and computational capacities have lead to significant progresses.
- Further, much deeper is the inverse
 question: given y and a specific B, what is
 the true state X?

- If B should also be a functional of X, the problem becomes arbitrarily nonlinear.
- Physicians are every day coping with such kind of inferring problems. Patients display identical symptoms from different sicknesses. They will need more historical information on the patients to try the solution.
- We will discuss here only the generalized pure linear inverse problem solution.

We then provide the linear integral equation of the first Kind:

$$y(x) = \int_{a}^{b} B(x, y) X(y) dy$$
(2)

Or in familiar discrete form:

• (3)
$$y_i = \sum_j B_{ij} X_j$$

 The classical example is the Jaynes dice inverse problem.

II.Maximum entropy principle to solving the inverse problems

- Let us start with a simple case of a dice.
- If a dice is fair and we throw it a very large times n, the expected valued will be 3.5, as from a uniform distribution.

- How to infer about f_i if we have?:
- (4) $4.5 = \sum_{i} i f_{i}$
- Where frequencies fi is ni/n.

 Which estimate of the set of frequencies would most likely yield this number?

The problem is underdetermined since there is many sets of *fi* that can be found to fit the single datum of equation (4).

Here we have to deal with a multinomial distribution where the multinomial coefficient w is given by:

$$W = \frac{N!}{Nf_1!Nf_2!..Nf_k!}$$

- In the case of a dice, parameter k equals 6 and w the number yielding a particular set of frequencies among 6 possible outcomes.
- We need only find the set of frequencies maximizing \boldsymbol{w} in order to find the set that can be realized in the greatest number of
- · ways.
- This is the same logic as maximizing the Shannon Gibbs entropy with output:

• (5)
$$H(f) = n^{-1} \log w = -\sum_{i} f_{i} \log f_{i}$$

- Jaynes(1957, 1984) maximized Shannon function through the restriction of information at hand. This opened entropy theory application to many scientific fields, including social sciences.
- In the case of a dice, the formulation becomes:

Maximising (5) H(p) = =-F'In F through the consistency (4), that is the a priori information about the system and the condition fulfillment of f_i additivity to one.

The outputs-using GAMS software, for above presented dice problem is:

(f1,f2,f3,f4,f5,f6)= (0.054, 0.079, 0.114, 0.166, 0.240, 0.348).

The next chapters generalize Shannon-Gibbs-Jaynes maximum entropy principle to Kullback-Leibler relative entropy. Next, the last targeted presentation will deal with Tsallis power law distribution to generalize Kullback-Leibler cross entropy.

III.Cross entropy principle

- Kulback (1957) et Good (1963) extended the Janes Shannon Gibbs model by formulating the principle of minimum cross(relative) entropy. Using an a priori information Q about unknown parameter P, the resulting formulation is as follows:
- (6) $MinI(p,q) = \sum pkIn(pk/qk) = P'InP P'InQ$
- (7) Y = XP
- (8) P'1 = 1

- One should note that when Q is fully consistent with moments, then P=Q and the distribution becomes uniform with qk = 1/K. This leads to the solution of maximum entropy principle.
- Thus, cross entropy principle stands for a generalization of the one of maximum entropy.

IV.Tsallis relative entropy extensions

- Like in statistical physics, socioeconomical random events display two types of behavior: ergodic and non ergodic systems.
- Whenever isolated in a closed space, ergodic systems dynamically visit with equal probability all the allowed micro states(Constantino Tsallis, 2004).

 Following Tsallis(2004), it seems logic to imagine systems visiting the allowed micro states in much more complex way than defined by ergodicity.

• We generalize the equation (6) by the Tsallis relative entropy formulation.

 If we use in the next equations usual symbols of social accounting matrix, a general definition of Tsallis maximum entropy is presented as follows:

$$S_q(A_{ij}) = -\sum_{k=1}^n A_{ij}^q \ln_q A_{ij}$$

And the Tsallis relative entropy as:

• (9)
$$I_{q}(A_{ij}//\vec{A}) = -\sum_{k=1}^{n} A_{ij} \ln_{q} \frac{\vec{A}}{A_{ij}}$$

• The latter formula measures the discrepancies between the a priori \overline{A} (i.e. the not balanced SAMEA) and the posteriori A_{ij} (i.e. the balanced SAMEA).

V.A SAM as a Walrasian equilibrium framework

- A social accounting matrix(SAM) is a square table which presents a summary of territorial(national) economic activities usually for a one year period.
- The underlying principle of SAM accounting is double entry bookkeeping by which revenues of any account are depicted along its row whereas expenditures of the same account are shown along its column.

Balancing a SAM

- Under neoclassical warlasian hypotheses, the above accounting must balance.
 Warlasian equilibrium is based upon the law of product and of value conservation.
- Conservation law of product: while ensuring that the flows of goods and factors must be absorbed by the production and consumption activities in the economy, is an expression of the principle of no free disposability.

Product and value laws of conservation = Cornerstones of warlasian equilibrium

 Conservation of product, while ensuring that the flows of goods and factors must be absorbed by the production and consumption activities in the economy, is an expression of the principle of no free disposability or market clearance.

Conservation law of value

- Conservation of value implies that the sum total of revenue from the production of goods must be allocated to rented primary factors, to other industries for intermediate inputs, or to the government as taxes.
- This industries make zero profit. This law simultaneously suggests constancy of returns to scale in production, perfectly competitive markets for produced commodities and balanced budget.

Outputs of SAMEA balancing

- We have used the software GAMS to balance the Polish social accounting matrix (2005) with ecological aspects.
- Annex 1b presents the no balanced SAMEA, and annex 2 presents the post Tsallis entropy balanced matrix.
- Data source: http://www.stat.gov.pl/gus/

Concluding remarks

- According to us, interesting and promising multidisciplinary approach.
- Better to generalise the Shanon entropy by the non extensive entropy approach which better tackles the problem of heavy queue when normal distribution is put into question. Data recovered from surveys desserve such attention.

Annex 1.a. Macroeconomic structure of a SAMEA

	_		. •	/I	'S LAIL						
Activities	Commodities	Capital	Enterprise s	Households	Public institutions	Rest of the world		Saving netto	Natural resources	Environme nt	Total(income)
	С			Self consumptions					Environme nt Protection	Pollutants Emission	Total production(net o
С				С	С	export					Total sale
W+Profits											W+Profits
axes				С	G _F	(X-M) _K	_	1			C+G _F +(X-M) _K +I
		W+Profits			G _H	(X-M) _C			Environme nt Protection	Pollutants Emission	W+G _H +(X-M) _C
	consumption taxes		T _F	тн					Environme nt Protection	Pollutants Emission	$T_{\rm p}$ + $T_{\rm H}$
	imports		(X-M) _K	(X-M) _C							(X-M) _K +(X-M) _C
				S _H	S_{G}						S _H +S _G
											Natural resource use
ction process											
ance absorption						Cross border pollutants					Environment d
costs	Total Absorption	W+Profits	T _F +(X-M) _K	C+T _H +(X-M) _C +S _H	G _F +G _H +S _G	(X-M) _C +(X-M) _K		1	Environme nt Protection	Pollutants Emission	

Annex 1b. The SAMEA 2005 of Poland

	Activity	Commoditie s	Labor	Capital	Household s	Enterprise s	GVMNT	Nonprofit Inst	CapAc count	NatRe s	Envirn mt	RoW
Activity		1906696033			47186003						6197,5	
Commodities	1055366158											
Labor	352183426		0	0	0	0		0		0	0	
Capital	505346700		0	0	0	0	0	0	0	0	0	0
Households			3,52E+08	0	0	14927790	153946000	0	0	0	17361, 2	0
Enterprises			0	505346700	2828976	6658576	20901000	3862000	0	0	0	27013000
GVMNT	40985752	84786414	0	0	187938000	24492000	13000	0	0	0	7811,4	0
NonprofitInst*			0	0	0	0	1022	0	0	0	0	0
CapAccount			0	0	500453	603456	400878	2023	0	0	0	45000
NatRes			0	0	2809911	0	8113	10952	872267	7606	0	5455412
Envirnmt			0	0	1410045	0	0	0	0	0	0	0
RoW		358825380	0	0	0	1460000	11607000	0	0	0	0	0
Total	1953882036	2350307827	3,52E+08	505346700	242673388	48141822	186877013	3874975	872267	7606	154100	32513412

• Macsam1 Assigned new balanced SAM flows from TCE X10 000 000

•		Act C	om Lab	or Capita	l Hou	u GRE	Nonprinst	Cap	NatRes	Envirnm	t RoW	Total
•	Act	191	841		3.487		0.	224 C).237			195.789
•	Com	98.548			59.047	26.478	6.58	37		44.357		235.018
•	Labor	31.640										31.640
•	Capital	49.164										49.164
•	Hou		31.64	0 49.164			0	.144	0.123			81.072
•	GRE	16.436	1.524		5.690	(0.559		2.	.849		27.058
•	Nonprins	t			0.5	65						0.565
•	Cap			10.1	79	0.005			0.395			10.579
•	NatRes			0.3	368	0.001						0.369
•	Envirnmt			0	.360							0.360
•	RoW	4	1.654		1.942	0.014	3.992	<u> </u>				47.601
•	Total	195.789	235.018	31.640	49.164	81.072	27.058	0.565	10.579	0.369	0.360	

Annex 3. Ecological aspects with impact on sustainable development

		Freshwater occupancy per capita (m ³)					
	Water	Usage efficiency of freshwater (Urban vs. Rural)					
		Ratio of underground water exploitation					
	Land	Arable land per capita (hectare)					
	Land	Multicropping index					
	Forest	Forestry coverage rate					
	rorest	Wood occupancy per capita (m ³)					
Resource	Ocean	Ratio of breed aquatics					
	Ocean	Fishing aquatics rate					
	Pasture	Pasture per capita (hectare)					
	Ore	Mining efficiency of ores					
	Ole	Ratio of mined ores					
	Energy	Energy intensity index					
	Energy	Ratio of clean energy					
	Waste	Ratio of waste recycling					
	Water	Water pollution index					
	Land	Ratio of deserting land					
	Land	Ratio of water and soil erosion					
	Air	Air pollution index					
Environment	Waste	Industrial waste treatment rate					
Environment	waste	Urban garbage treatment rate					
	Noise	Urban noise index					
	Biodiversity	Ratio of threatened species					
	Protection	Urban greenbelt per capita (m ²)					
	TIOUCCHOII	Ratio of "green" products					

Concluding remarks

- According to us, interesting and promising multidisciplinary approach.
- Better to generalise the Shanon entropy by the non extensive entropy approach which better tackles the problem of heavy queue when normal distribution is put into question. Data recovered from surveys desserve such attention.

Main Bibliographical reference

- 1. A. Golan, G. Judge, D. Miller, Maximum Entropy Econometrics: robust estimation with limited data, John Wiley & Sons, june 1996
- 2. M. Gell-Mann, C. Tsallis, Nonextensive Entropy, Interdisciplinary Applications, Oxford University Press, 2004
- 3. E. T. Jaynes, PROBABILITY THEORY: THE LOGIC OF SCIENCE, Washington University, USA, June 1994
- 4. Giffin, A. And Caticha, A., <u>Updating Probabilities with Data and Moments</u>, 2007, Department of Physics, University at Albany–SUNY, USA.
- 5. Polish Office of Statistics (GUS), http://www.stat.gov.pl/gus/
- 6. Sherman Robinson, Andrea Cattaneo And Moataz El-Said, Updating and Estimating a Social Accounting Matrix Using Cross Entropy Methods, Working Paper, International Food Policy Research Institute, Washington, D.C. 20006, U.S.A., August 2000.

Dziekuje za uwage