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Abstract – We propose a combination of cluster analysis and stochastic process analysis to
characterize high-dimensional complex dynamical systems by few dominating variables. As an
example, stock market data are analyzed for which the dynamical stability as well as transitions
between different stable states are found. This combined method allows especially to set up new
criteria for merging clusters to uncover dynamically distinct states. The low-dimensional approach
allows to recover the high-dimensional fixed points of the system by means of an optimization
procedure.

Copyright c⃝ EPLA, 2015

Introduction. – For complex dynamical systems con-
sisting of many interacting subsystems it is a general
challenge to reduce the high dimensionality to a few
dominating variables that characterize the system. Clus-
ter analysis is a method to group elements according
to their similarity. However, there is an ambiguity as
different algorithms may lead to different clusters [1,2].
The dynamical behavior of complex systems may reduce
their complexity by self-organization. Here the high-
dimensional dynamics generates a few order parameters
evolving slowly on a strongly fluctuating background [3].
With the help of stochastic methods it is possible to show
such simplified dynamics and to estimate a Langevin equa-
tion directly from the data, i.e. the data are analyzed as
a stochastic process with drift and diffusion term [4].

We show that cluster analysis and stochastic methods
can be combined in a fruitful way. Cluster analysis does
not aim at grasping dynamical effects. By combining it
with stochastic methods we show that an improved dy-
namical cluster classification can be obtained. Further-
more we extract dynamical cluster features of a complex
system as emerging and disappearing clusters. Related
ideas were put forward by Hutt et al. [5] for detecting fixed
points in spatiotemporal signals. Here, we focus on finan-
cial data, for which quasi-stationary market states were
identified in the correlation structure using cluster analy-
sis [6]. We briefly sketch these findings before developing
our combined analysis.

(a)E-mail: philip.rinn@uni-oldenburg.de

Market states: clustering. – We study the daily
closing prices Sk(t) of the S&P 500 stocks for the period
1992–2012 [7], which aggregate to 5189 trading days. Only
the 306 stocks that were continuously traded during the
whole period are considered. We calculate the relative
price changes, i.e. the returns

rk(t) =
Sk(t + ∆t) − Sk(t)

Sk(t)
, (1)

for each stock k for a time horizon ∆t of one trading day
(td). To avoid an estimation bias due to time-varying
trends and fluctuations, we perform a local normaliza-
tion [8] of the returns before estimating their correlations.
We denote the locally normalized returns by r̃k(t). We
then calculate the Pearson correlation coefficients

Cij =
⟨r̃ir̃j⟩ − ⟨r̃i⟩⟨r̃j⟩

σiσj
. (2)

Here ⟨. . .⟩ denotes the average over two trading months,
i.e. 42 trading days. The choice of this particular esti-
mation interval is a trade-off between reducing the esti-
mation noise and still being able to resolve changes in the
correlation structure as refs. [9,10] empirically find a char-
acteristic time scale of three months for the correlation
dynamics. We obtain a correlation matrix C(t) for each
time t by moving the estimation interval in steps of one
trading day through the time series.

All of the considered companies are classified by ten in-
dustry sectors according to the Global Industry Classifica-
tion Standard (GICS) [11]. To reduce the estimation noise,
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Fig. 1: Clustering tree (a) and temporal evolution of the
states (b).

we average the correlation coefficients within each sector
and between different sectors, leading to 10×10 matrices.
While this sector-averaged matrix is symmetric, its diago-
nal is not trivial. Thus, it contains d = (102 + 10)/2 = 55
independent entries. The crucial idea is to identify each
averaged correlation matrix with a vector in the real
d-dimensional Euclidian space Rd, which we then clus-
ter according to their similarity. The appropriate clus-
tering method should be based on a similarity measure
which is sensitive to changes in any of the d coordinates.
Furthermore, motivated by the recently introduced en-
semble approach [12,13] we demand from the clustering
method to uncover the dominating fixed points of the
system, around which the system statistically oscillates.
The k-means clustering, which is originally based on the
Euclidian norm, provides therefore a suitable clustering
method. Reference [14] empirically shows that the hier-
archical version of the k-means clustering, i.e. the bisect-
ing k-means, performs better than the standard k-means
algorithm, and at least as good as some other hierarchi-
cal clustering algorithms used in ref. [14]. Reference [15]
shows that the k-means algorithm is robust to changes
of the metric. We therefore deem the bisecting k-means
algorithm with Euclidian norm an appropriate choice for
our study and measure all distances in the Euclidean norm
which we denote by ∥ . . . ∥.

As the next step we apply the bisecting k-means clus-
tering algorithm. At the beginning of the clustering pro-
cedure all of the correlation matrices are considered as one
cluster, which is then divided into two subclusters using
the k-means algorithm with k = 2. This separation pro-
cedure is repeated until the size of each cluster —in terms

0 1000 2000 3000 4000 5000
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X
i(t

)

X6(t)
X1(t)

Fig. 2: (Color online) Evolution of the distance (3) of the sys-
tem to cluster center 1 (dashed, red curve) and cluster center
6 (black curve).

of the mean distance of the cluster members to the clus-
ter center— is smaller than a given threshold. We choose
the mean distance to be smaller than 1.564 to achieve 8
clusters as in ref. [6]. The market is said to be in a market
state i at time t, if the corresponding correlation matrix
is in the i-th cluster. In fig. 1(a) the corresponding clus-
tering tree is shown. Figure 1(b) depicts the temporal
evolution of the financial market. New clusters form and
the existing clusters vanish in the course of time. And
while the first 1000 trading days are dominated by state 1
and the market only occasionally jumps into state 3, we
observe more frequent jumps and less stable behavior in
more recent times.

To quantify the market situation at time t, the distance

Xi(t) =∥ C(t) − µi ∥ (3)

of the correlation matrix C(t) to the eight cluster centers
µi (i = 1, 2, . . . , 8) is calculated. Two of the eight resulting
time series are shown in fig. 2. These time series depict the
temporal evolution of the system seen from the respective
cluster centers. Figure 2 shows that the market is in the
beginning close to cluster center 1 and far away from clus-
ter center 6. This changes over time in accordance with
fig. 1(b): cluster 6 occurs later while cluster 1 is present
during the first half of the time period.

Stochastic analysis. – A wide class of dynamical
systems from different fields is modeled as stochastic
processes and thus described by a stochastic differential
equation, the Langevin equation [4,16]

Ẋ(t) = D(1)(X, t) +
√

D(2)(X, t)Γ(t), (4)

which describes the time evolution of the system vari-
able X as a sum of a deterministic function D(1)(X, t)
and a stochastic term D(2)(X, t)Γ(t). The stochastic
force Γ(t) is Gaussian distributed with ⟨Γ(t)⟩ = 0 and
⟨Γ(t)Γ(t′)⟩ = 2δ(t− t′). For stationary continuous Markov
processes Siegert et al. [17] and Friedrich et al. [18] showed
that it is possible to extract drift and diffusion functions
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Fig. 3: Potentials exhibit stability of fixed points (a), (b) and transitions between system states (c)–(e). The vertical dotted
lines correspond to the respective cluster centers, see fig. 2. The interval in days over which the potentials were obtained is
denoted by [t1 : t2].

directly from measured time series using the Kramers-
Moyal coefficients M (n), which are defined as conditional
moments,

D(n)(x) =
1

n!
lim
τ→0

M (n)
τ (x)

τ
, (5)

M (n)
τ (x) = ⟨(X(t + τ) − X(t))n⟩

∣

∣

∣

X(t)=x
. (6)

Here x denotes the value of the stochastic variable X(t)
at which the drift function (n = 1) and the diffusion func-
tion (n = 2) are evaluated. The average in eq. (6) is per-
formed over all realizations of X(t) for which the condition
X(t) = x holds. Equation (6) expresses therefore (modulo
the exponent n) the mean increment of the variable X(t)
after time step τ if starting at the given value x at time t.
The derivative of this mean increment with respect to τ at
τ = 0 is equal to the value of the drift function for n = 1
and the diffusion function for n = 2 at x, as defined in
eq. (5). We refer to ref. [4] for further details.

In the present work we estimate the drift functions on
time windows of 1000 trading days, on which the esti-
mated quantities are treated as time independent. The
time dependence is obtained by comparing the estimated
drift functions on a sliding time window. Especially for
small data sets the estimation of the conditional mo-
ments (6) might be tedious. Additionally to the original
estimation procedure proposed by Siegert et al. [17] and

Friedrich et al. [18] we use here a kernel-based regression
as proposed in refs. [19,20].

Instead of analyzing the drift function itself, it is more
convenient to consider the potential function defined as
the negative primitive integral

Φ(x) = −

∫

D(1)(x)dx (7)

of the drift function. The minus sign is a convention. The
dynamics of the system is encoded in the shape of Φ(x):
the local minima of the potential function correspond to
quasi-stable equilibria, or quasi-stable fixed points, around
which the system oscillates. In contrast, local maxima
correspond to unstable fixed points. We note that, due to
definition, potential functions are defined up to an additive
constant which is here set to zero. We further note that
both the drift function and the potential function have the
dimension of inverse time.

Optimizing the algorithm. – One drawback of clus-
tering is that the number of clusters is in general not
known a priori. Therefore, a threshold criterion is used.
Furthermore, clustering is based only on geometrical
properties like positions and distances between elements,
i.e. their similarity. The dynamics of the system is not
involved. As a new approach we combine the clustering
analysis with the stochastic analysis. The aim is to extract
dynamical attributes from time series and derive stability
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features and quasi-stable fixed points. These stochastic
properties provide a stop criterion of the clustering di-
vision as we show in the next section.

From the eight time series as defined in eq. (3) we cal-
culate the deterministic potentials Φ(x)i (i = 1, 2, . . . , 8)
as defined in eq. (7). To grasp the time evolution of the
clusters, i.e. market states, we calculate Φi(x) on a win-
dow of 1000 data points (≈ four trading years) which we
shift by 21 data points (≈ one trading month), resulting
in 199 deterministic potentials Φi(x) for each cluster i.

Figure 3 shows a sample of these potentials for differ-
ent time windows. The dotted vertical lines denote the
distance to the cluster centers which are labeled at the
abscissa. Each potential in the five figures shows a clear
minimum. Hence, the market dynamics expressed by the
correlation matrices performs a noisy dynamics around the
attractive fixed point, which is defined by the minimum.
Most interestingly the position of the minima of these po-
tentials coincide quite well with the distances to the cluster
centers obtained from the cluster analysis. Additionally
to the positions of the fixed points of the system, the
potentials provide information about the stability of the
market in the analyzed time window. Potential func-
tions with more than only one clear local minimum, e.g.
fig. 3(a) and (b), reflect an unstable dynamics. In contrast
an isolated and deep minimum as in fig. 3(e), corresponds
to a stable dynamics.

In fig. 3(c)–(e) a transition from state 4 and 5, which
are very close, to state 2 is shown. The quasi-stable fixed
point of the potential function changes its position in time
and moves closer to the center of the first cluster. We note
that in the intermediate state, as shown in fig. 3(d), the
width of the potential function is increased. Instead of a
clear local minimum it has a rather flat plateau. The time
evolution of the market reflected in the position change of
the local minimum of the potential function is thus taken
as a state transition. The ability of our approach to de-
scribe multi-stable and transitional behavior has also been
shown by Mücke et al. [21] in the context of wind energy.
The stability of market states as well as state transitions
are studied in detail by Stepanov et al. in [22].

Merging of the clusters. – Besides the cases where
the positions of the minima of the potentials coincide
clearly with the distances to cluster centers, there are also
less clear situations as shown in fig. 4. In the considered
time window I = [3109 : 4108] (expressed in td) the mar-
ket is switching between the states 2, 3, 4, 5 and 6. The
clustering procedure as described above does not take the
dynamics of the market into account. All of the correla-
tion matrices are clustered at the same time without any
information about how the market is jumping between the
correlation matrices. The elements of a cluster are chosen
in such a way that the sum of the distances to its cluster
center is minimized.

The stochastic analysis of the market dynamics seen
from cluster center 1 as well as from cluster center 3,
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Fig. 4: (Color online) Result of merging states 4, 5 and 6 to
match the minimum of the potential seen from state 1 (a) and
state 3 (b).

shows that the potential function exhibits a pronounced
minimum between the distances to the cluster centers 5, 4
and 6 as shown in fig. 4. This fact is now taken as a crite-
rion to change the cluster analysis in a way that the clus-
ters 4, 5 and 6 will be combined to a new cluster 5∗. That
this merging of clusters is natural is indicated by the clus-
tering tree of fig. 1(a), as the three merged clusters arise
from the split of the same ancestor cluster. If the threshold
is chosen small enough, this cluster would not have been
split, while all other clusters would have. We therefore get
a dynamical stop criterion for the clustering division.

For reference we show in fig. 5 the temporal evolution of
the states after merging clusters 4, 5 and 6 to cluster 5∗.
The distance to the center of the merged cluster as seen
from clusters 1 and 3, respectively, coincides remarkably
with the position of the local minimum of the potential as
marked by the broken line (dash point) in fig. 4. We thus
conclude that while for the chosen threshold the clusters,
i.e. market states 4, 5 and 6 are geometrically distinct,
together these states form a single quasi-stationary state.
While being in this state, the system fluctuates around
the center of the cluster 5∗, which is a fixed point of the
system. We note that the mean correlation matrix

C̄ =
1

NI

∑

t∈I

C(t) (8)
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Fig. 5: Temporal evolution of the remaining six states (top).
The merged market state is denoted by 5∗. The lower plot
shows the time evolution of ∆(t) as defined in eq. (11). The
time points in which the market occupies the merged state 5∗

are marked by the vertical grey lines.

of the analyzed time period I differs clearly from the center
of the merged cluster µ5∗ with ∥ µ5∗ − C̄ ∥= 0.55. Here
NI denotes the length of I. Furthermore the distances
to the cluster center 1 ∥ µ1 − C̄ ∥= 1.42 and the cluster
center 3 ∥ µ3 − C̄ ∥= 0.82 do not match the positions of
the minimum of the potential as shown in fig. 4.

Identifying high-dimensional fixed points. – In
the previous section we used clustering and stochastic
analysis of the one-dimensional time series to obtain fixed
points of the system. We identified the positions of the
local minima of the potential functions with the distances
to the quasi-stationary fixed points. In this section we
propose a method to identify quasi-stationary fixed points
by an optimization problem.

We recall that the mean correlation matrix (8) mini-
mizes the sum of distances

∑

t∈I

∥ Λ − C(t) ∥ (9)

of C(t) in I to a fixed correlation matrix Λ. For high-
dimensional empirical data, distinct subspaces (principal
components) may exist along which data points are prefer-
ably distributed [22–24]. Therefore, we require the fixed
points of the system to be elements of these subspaces.
As the sum of two elements of a given principal compo-
nent is not necessarily an element of this component any
more, the calculation of the average (8) does not yield a
fixed point of the system in general. We gave an example
of this in the previous section. The calculated average C̄

does not match the position of the fixed point found by
stochastic analysis.

Here we propose to identify system fixed points as the
elements of the preferred subspaces which are the most
similar to all C(t) in a given time interval I, i.e. they
minimize the sum of distances (9). In the absence of any
preferable subspaces we recover the mean correlation ma-
trix C̄. This idea is similar to the definition of the geode-
tic curves on an arbitrary manifold which minimize the
distance between any two points and are not necessarily
straight lines any more.

As an application we consider the data sample from the
previous section. As shown in fig. 4 the stochastic analysis
in the time interval I = [3109 : 4108] (expressed in trading
days) shows a deep minimum at X0 ≈ 1.9 as seen from the
center of the first market state µ1. The data points are
therefore distributed approximately around µ1. The set
of all possible fixed points is restricted to the points on
the (d − 1)-dimensional hypersphere of radius X0 around
µ1. To find the empirical fixed point for this setting we
minimize (9) under the condition

∥ µ1 − Λ ∥≡ X0 ≈ 1.9, (10)

which we solve by the method of Lagrange multipliers. We
note that for the Euclidian norm the problem always has
a unique minimum and maximum, unless the distance (3)
is constant.

The empirical solution of the problem, denoted by C0,
differs slightly from the center of the merged cluster de-
fined in the previous section, ∥ C0 − µ5∗ ∥≈ 0.35. This is
because the market does not exclusively stay in the merged
state 5∗ during the analyzed time period I, as observed in
fig. 5(a).

We now quantify the deviation of the obtained fixed
point C0 from the averaged correlation matrix C̄ by look-
ing at the difference

∆(t) =∥ C(t) − C0 ∥ − ∥ C(t) − C̄ ∥ (11)

of the distances from C(t) to C0 and C̄, respectively. The
market is closer to C0 than to C̄ whenever ∆(t) < 0 holds.

The time series ∆(t) is shown in fig. 5(b). It is
switching between positive and negative values. The grey
background highlights the time points t at which the mar-
ket occupies the merged state 5∗, which remarkably coin-
cides with the negative values of ∆(t). We almost exactly
quantify the merged market states during which ∆(t) falls
rapidly down from positive values. Not only is the market
state identified but also the dynamics within the market
state. As seen from fig. 5(b), the values of ∆(t) continu-
ously decrease and then increase again while the market
occupies the merged state. In contrast ∆(t) is fluctuat-
ing around a positive value while the market is not in the
merged state.

As a consistency check, we applied the same algorithm
with the center of the third cluster µ3, as well the overall
mean correlation matrix as reference points. In all cases
we obtained the same fixed point C0.
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Conclusions. – The combination of the cluster anal-
ysis and the stochastic process analysis allows to char-
acterize the dynamics of a dynamical system as a noise
process between different quasi-stationary states. For fi-
nancial markets these market states are defined in terms
of correlation matrices which reflect the dependence struc-
ture of the stock market. Especially, while being in a given
market state, the market is fluctuating around the center
of the corresponding cluster. A threshold criterion can
produce geometrically distinct states, which are a single
quasi-stationary state of the system. The deviation of the
market situation at time t from individual market states
is reflected in the distance between the correlation ma-
trix C(t) and the respective cluster centers. This distance
is taken as the new low-dimensional order parameter of
the complex system. The stochastic analysis provides evi-
dence of how the market dynamics is guided by a changing
potential landscape with temporally changing stability of
the market states. Emerging new quasi-stable states are
found. In this way we present a method with which the
dynamics of a high-dimensional complex system is pro-
jected to low-dimensional collective dynamics. Further-
more we address the high dimensionality of the data set
by an optimization problem. This problem is well defined
and is robust against the choice of reference points. We
obtain high-dimensional quasi-stable fixed points of finan-
cial markets explicitly and see good chances to apply this
method also to other complex states. The emerging and
disappearing clusters reflect the dynamical cluster evolu-
tion. Yet, in our study we consider the complete data set
ex post. For more applied questions, it would certainly
be interesting to consider an advancing end-point of our
historical time window in future studies. Still, even in our
ex post analysis we could already gain valuable insights
about the stability of market correlations, which is a cen-
tral issue for portfolio optimization and general investment
decisions.

∗ ∗ ∗
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