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Abstract.  We combine geometric data analysis and stochastic modeling 
to describe the collective dynamics of complex systems. As an example we 
apply this approach to financial data and focus on the non-stationarity of the 
market correlation structure. We identify the dominating variable and extract 
its explicit stochastic model. This allows us to establish a connection between 
its time evolution and known historical events on the market. We discuss 
the dynamics, the stability and the hierarchy of the recently proposed quasi-
stationary market states.
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1.  Introduction

Big data is the buzzword of recent years, reflecting an ever increasing amount of elec-
tronically available data that demands analysis and interpretation. Our focus is on 
complex dynamical systems such as financial markets, where huge data sets exist in 
the form of multivariate time series. The dynamical behavior of such systems may 
reduce their complexity by self-organization [1]. System variables, which are measured 
as single time series, couple together to a few dominating variables, which accurately 
describe the system dynamics and allow for predictions. The self-organization may pro-
duce patterns in observed data which are generally difficult to uncover. A wide range 
of data analysis techniques is available and widely used, including graph theoretical 
information filtering [2–7], data clustering [8–13] and geometric approaches [14–18]. 
All these techniques are based on a similarity measure between the data points. There 
is a major disadvantage in this approach: The time information of the measured data 
is neglected. Thus, the system dynamics is not explicitely taken into account. On the 
other hand, dynamical variables of complex systems have been successfully described 
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by stochastic processes [1, 19–22]. In this description the variables evolve in time 
according to deterministic dynamics, which gives access to system stability and fixed 
points and is exposed to generally non-trivial stochastic fluctuations. Here, we combine 
the data set analysis with stochastic methods in order to capture the full dynamics 
of the system. Similar techniques have proven successful in the description of com-
plex dynamical systems [23–25]. We apply our approach to stock market data and 
investigate the dynamics of the stock price cross correlation, which is known to be 
non-stationary [26–29]. The paper is organized as follows: we present the data set and 
perform a geometric data analysis to uncover the dominating variable in section 2. In 
section 3 we identify the quasi-stationary states of the financial market following [12]. 
We draw connections to known historical events. In the present work we go beyond the 
pure identification of the quasi-stationary market states and investigate their stability 
and dynamics. We present the stochastic analysis in section 4 and discuss our results 
in section 5.

2. Analyzed data

In section 2.1 we introduce our data set and the analyzed quantities. We perform a 
geometric analysis of the data in section 2.2.

2.1. Observed quantities

We analyze daily adjusted closing stock prices Si(t) i   =   1, ..., K of the K   =   307 compa-
nies in the S&P500 Index continuously traded over the period of 21 years ranging from 
early 1992 to the end of 2012. The data is freely available at finance.yahoo.com. To 
measure the correlations, we use the daily returns

=
+ −

r t
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i i
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and normalize them locally [30], to smooth out trends on very short times. We measure 
the time t in trading days. We then calculate the ×K K correlation matrices C(t) by 
averaging over a time window of T   =   42 which is moved in one-day steps through the 
data. The elements of C(t) are the Pearson correlation coefficients
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of a quantity f (t) is evaluated over the T data points before t. We note that in con-
trast to the stock prices Si and price returns ri, the correlation coefficients Cij(t) are 

http://dx.doi.org/10.1088/1742-5468/2015/08/P08011
http://www.finance.yahoo.com


Stability and hierarchy of quasi-stationary states: financial markets as an example

4doi:10.1088/1742-5468/2015/08/P08011

J. S
tat. M

ech. (2015) P
08011

bounded quantities. All together we obtain N   =   5169 correlation matrices. The corre-
lation matrices calculated on the short intervals T are noisy. We reduce the noise by 
averaging over the correlation coefficients which yields the mean correlation coefficient

=c t C t( ) ( ) .ij⟨ ⟩� (4)

Here ... ij⟨ ⟩  denotes the average over all = − =d K K( )/2 46 9712  independent cor-
relation coefficients of every correlation matrix C(t).

We recall the spectral decomposition
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of the ×K K correlation matrix C(t) [16, 17]. Here λ t( )a  denotes the ath eigenvalue of 

C(t), →u t( )a  the corresponding normalized eigenvector and →u t( )a
†  its transpose. The rank 

of C(t) is T and therefore only the first T eigenvalues are non-zero. For our data the 
first and the largest eigenvalue λ λ=t t( ) ( )1 max  is sufficiency larger than the other eigen-
values. All components of →u t( )1  are approximately equal to 0.05, while the components 
of the other T  −  1 eigenvectors spread around zero for every time t. Therefore →u t( )1  cor-
responds to the dynamics of the whole market as in [16, 17]. Hence averaging over the 
correlation coefficients

κλ= ≈c t C t t( ) ( ) ( )ij max⟨ ⟩� (6)

we recover the largest eigenvalue. Here

κ = ≈→ →u t u t( ) ( ) 229ij1 1⟨ ⟩†
� (7)

is an empirical factor which appears due to the noise in the data. The time evolution 
of the largest eigenvalue is strongly correlated with the mean correlation coefficient 
c t( ), the Pearson correlation is 0.998. This connection has also been pointed out in 
[27]. Therefore, the quantities λ t( )max  and c t( ) share the same dynamics. We will show 
in section 2.2 that c t( ) has as much variability in the values as possible for our data. 
Figure 1(a) shows the time evolution of c t( ). We also present the time evolution of the 
S&P500 Index in figure 1(b).

2.2. Geometric approach: principal component analysis

We identify each correlation matrix C(t) with a correlation vector
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in the real d-dimensional Euclidian space Rd. Here ci(t) is the ith component of →c t( ). We 
then apply the principal component analysis (Pearson [14], Hotelling [15]) to quantify 
orthogonal and therefore uncorrelated one-dimensional subspaces in our time series 
ci(t), i   =   1, ..., d.
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The first principal component is defined as the line in Rd with the largest possible 
variance of the data values. The other principal components are those with the largest 
data variance and orthogonal to the preceding components. The number of the princi-
pal components is smaller or equal to d. The principal components are spanned by the 
orthogonal eigenvectors v̂i, i   =   1, .., d of the symmetric ×d d covariance matrix

=W AA .†� (9)

Here A is the ×d T  data matrix with d empirical times series ci(t) as rows and A† 
denotes its transpose.

The rank of W is d Tmin( , ) and we can not apply the PCA to our full data so we 
applied the principal component analysis (PCA) to randomly chosen 100 stocks ending 
up with d   =   (1002  −  100)/2   =   4950 time series of length T   =   5169. Figure 2(a) shows 
the eigen vector components distribution for the first ten principal components.

The components of the first normalized eigen vector are concentrated around a 
constant value 0.014, while the values of the other nine are symmetrically distributed 
around zero. Therefore the direction with the largest variance in data values is the 
subspace spanned by the vector

Figure 1.  (a) Time evolution of the mean correlation coefficient c t( ). (b) The S&
P500 Index for the same time period. Dashed lines highlight economically distinct 
time intervals as described in section 3.2.
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The variance of data values for the first ten principal components are shown in 
figure 2(b). The variance of the first principal component is much larger than the oth-

ers. The correlation matrices C(t) from our data set seen as vectors R∈→c t( ) d are thus 
distributed along v̂1. Figure 3 shows the projection of our data onto the first three prin-
cipal components in a scatter plot. The distribution of the data points along the first 
principal component is dominating. The contribution of the correlation matrix C(t) to 
the first principal component at time t is given by the scalar product

∑= =
=

→c t v
d

c t c t d( ), ˆ
1

( ) ( ) ,
i

d

i1

1
� (11)

and turns out to be the mean correlation coefficient (4) times the fixed number d. 
The dynamics of the market is therefore dominated by the movement along v̂1 which 
is given by c t( ). Equation (11) confirms the spectral analysis results discussed in sec-
tion 2.1. We note that spectral analysis of the correlation matrix C(t) is the principal 
component analysis of the standardized returns

σ
=

−
r t

r t r t

t
ˆ( )

( ) ( )

( )
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i i T

i
T( )

⟩
� (12)

treated as element of RK. Therefore the projection of (12) on the first principal compo-
nent in RK at time t is equal to the non-weighted average of r tˆ( )i .

The projections →c t v( ), 2̂  and →c t v( ), 3̂  describe system dynamics along the second 
and third principal component and are shown in figure 4.

Figure 2.  (a) The distribution of the first ten normalized principal components 
and (b) their variances normalized to the largest value.
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3. Market states: distinct periods of the market

We cluster the data following [12] and identify the quasi-stationary states of the finan-
cial market which we present in section 3.1. We connect the characteristic states on the 
market to the known historical events in section 3.2.

3.1. Market states

In the previous section we showed that our data is spread along a few dominating sub-
spaces in Rd. To quantify the similarity between any two correlation matrices C(ta) and 
C(tb) we calculate the distance

� � � �= − = −→ →D C t C t c t c t( ) ( ) ( ) ( )ab a b a b� (13)

via the Euclidean norm on Rd normalized by d.

Figure 3.  Data set projected onto the first three pricipal components. Different 
colors highlight different market states as explained in section 5.

2

3

1

3

22

Figure 4.  Time evolution of the projections →c t v( ), 2̂  (solid, black) and →c t v( ), 3̂  
(dashed, red) onto the second and third principal components normalized by d.
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As the next step we use the bisecting k-means clustering algorithm [9]. At the begin-
ning of the clustering procedure all of the correlation matrices are considered as one 
cluster, which is then divided into two sub clusters using the k-means algorithm with 
k   =   2. For each cluster α we then calculate its cluster center

∑µ =α
α α∈

→ →

N
c t

1
( ),

t
� (14)

which is the mean correlation matrix in this cluster. Here αN  denotes the number of the 
cluster elements and α∈t  symbolically denotes all times t for which →c t( ) is in the cluster 
α. The separation procedure is repeated until the cluster size

� �∑ µ= −α
α α

α
∈

→ →R
N

c t
1

( )
t

� (15)

is smaller than a given threshold for every cluster α. We choose the mean distance to be 
smaller than 0.164 to achieve 8 clusters as in [12]. The market is said to be in a market 
state α at time t, if the corresponding correlation matrix C(t), and hence the correla-
tion vector →c t( ), is in the cluster α. The time evolution of the market states is shown in 
figure 5. In figure 6 the corresponding clustering tree is shown. The state occupied on 
the first day of our data is labeled by one. The remaining states are labeled according 
to the mean value of c t( ) within the states as shown in figure 6. We group the states 
into three main classes. The market states one, two and three represent calm states. 
The states four, five and six are intermediate states. The states seven and eight are 
the turbulent states. The financial market evolves between these different states. New 
states form and existing states vanish in the course of time. For example the first four 
years are dominated by the states 1 and 2 in the last four years mainly the states 8 and 
7 are occupied.

3.2. Distinct time periods

We divide the entire time period into six dynamically and economically distinct 
intervals.

Figure 5.  Time evolution of the market states. Dashed lines highlight economically 
distinct time intervals as described in section 3.2
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	(i)	 Early 1992 to spring of 1996: in this rather calm period c t( ) varies between 0 and 
0.2. The S&P500 Index continuously grows with moderate volatility. The market 
mainly occupies the first and the second state.

	(ii)	 From spring 1996 until spring 2000: the range that c t( ) explores as well as the 
S&P500 Index drastically increase. The volatility also becomes larger. The increase 
of c t( ) is explained by the appearance of strongly correlated industrial sectors 
during this period, especially the technology sector. The market state two almost 
disappears and the market jumps mainly between states five and one. We note that 
the fifth state appears only during this period.

	(iii)	Spring 2000 to the second half of 2003: this period fully covers the dot-com bubble 
and is known as a very turbulent time in financial markets due to the crisis. The 
S&P500 Index drops continuously, losing about half of its value. The mean correla-
tion coefficient reaches its maximum at 0.48. At the beginning of the crises state 3 
appears for about one year. This state appeared only once during the entire time 
period. In the second half the market is switching between states four and six and 
occupies state seven by the end of 2002. This period includes the market response 
to the 9/11 attacks.

	(iv)	From the second half of 2003 until fall of 2007: this period covers the four years 
period before the recent global financial crises up to the 1 year period before the 
collapse of Lehman Brothers. As seen from the S&P500 Index in figure  1, the 
market seems to recover after the dot-com crisis but c t( ) does not calm down and 
strongly fluctuates around a mean value 0.28. The market is jumping between 
states four, six and seven. State six is occupied mainly during this interval.

Figure 6.  Clustering tree of the market states clustering. The mean value of c t( ) 
within the states is given in parentheses.

http://dx.doi.org/10.1088/1742-5468/2015/08/P08011
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	(v)	 From October 2007 until March 2009: this period covers the late-2000s financial 
crisis. The S&P500 Index drops continuously and looses approximately half of its 
value. The mean correlation coefficient is peaked sharply at 0.67. The market is 
mainly in state seven and occupies the eighth state by the end of 2008.

	(vi)	March 2009 to end 2012: the market seems to slowly recover as the S&P500 Index 
grows again. The growth interrupted by drastic drops. This is reflected in high 
peaks of c t( ), which accounts its maximum value 0.77 in the analyzed 21 years. The 
mean correlation coefficient does not relax to the values it had before the crisis. 
The market is switching between states seven and eight and decays for short time 
into the states four and six.

4. Stochastic analysis

We describe the stochastic process used to model c t( ) in section 4.1. In section 4.2 we 
explain how the explicit model is extracted form the time series. We describe the sto-
chastic analysis of the market states in section 4.3.

4.1. Stochastic processes

We model c t( ) as a stochastic process described by a Langevin equation

= + Γ
t
c t f c t g c t t

d

d
( ) ( , ) ( , ) ( ),� (16)

i.e. a stochastic differential equation (SDE) for the variable R∈c t( ) . Here f is the deter-
ministic part of (16)—the drift function and g is the diffusion function, which defines 
the stochastic part of (16). Γ t( ) is the δ-correlated Gaussian white noise with Γ =t( ) 0⟨ ⟩  
and δΓ Γ = −t t t t( ) ( ) ( )1 2 1 2⟨ ⟩ . We note that for the dimensionless variable c t( ) the drift 
function has a dimension of inverse time and the diffusion function has a dimension of 
inverse square root of time.

The solution of (16) is defined in terms of stochastic integrals, which depend on the 
choice of the discretization [31–33]. Throughout this paper we use Itô’s choice (see Itô’s 
interpretation of SDEs [32, 34]). The advantage of Itô’s definition is that the diffusion 
term g is uncorrelated with the Gaussian white noise Γ =g c t t( , ) ( ) 0 [32]. The drift 
and diffusion terms can therefore be obtained as conditional moments [32, 35]

τ
τ

=
+ −

τ→ =
f c t

c t c t
( , ) lim

( ) ( )
,

c t c0 ( )
� (17)

τ
τ

=
+ −

τ→ =
g c t

c t c t
( , ) lim

( ( ) ( ))
.

c t c

2

0

2

( )
� (18)

Here c denotes the value of the stochastic variable c t( ) at which the value of the 
drift or the diffusion is evaluated. At this one instant we distinguish between c t( ) and a 
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particular numerical value c. The average in equations (17) and (18) is performed over 
all realizations of c t( ) for which the condition =c t c( )  holds. These equations express 
therefore the time derivative of the mean displacement and its square of c t( ) at c.

Expressions (17) and (18) allow one to estimate the drift and diffusion directly 
from the empirical data as shown in [19, 20] and sketched below, see [1, 21, 22, 36] for 
applications. In the present work we model c t( ) by an Itô stochastic process and esti-
mate the deterministic as well as the stochastic part of the corresponding SDE from 
the empirical time series.

4.2. Estimation of the conditional moments

For the estimation of the drift and the diffusion directly from the data set we mainly 
follow [19–22]. Here, we briefly sketch the estimation procedure for the drift function, 
i.e. the first conditional moment (17), as the estimation of the diffusion function (18) 
works accordingly. We first introduce a new function

τ
τ
τ

=
+ −

=
M

c t c t
( )

( ) ( )
,c

c t c( )
� (19)

for which the drift function

τ=
τ→

f c t M( , ) lim ( )c
0� (20)

is obtained at τ = 0. We note that we dropped the time variable t in the argument of 
M in equation (19) for brevity. For the estimation of τM ( )c  at fixed c as a function of τ 
we divide the time series c t( ) into bins with equal number of data points. For every bin 
I the function τM ( )c  is then estimated as

τ
τ
τ

=
+ −

∈
M

c t c t
( )

( ) ( )
.c

c t I( )
I� (21)

Here cI is the mean value of c t( ) in bin I and the average is performed over all data 
in this bin. We note that for the empirical data this estimation can only be done for 
discrete values of τ = 1, 2, 3.... We then fit a second order polynomial in τ to the empiri-
cally estimated values of (21), extracting the desired value of the drift at cI as the con-
stant coefficient of the fitted function. The estimation of (19) is only possible for the 
realized values of the empirical times series c t( ).

Instead of analyzing the drift function (17) itself, it is more convenient to consider 
the potential function

∫= −V c t f x t x( , ) ( , )d ,
c

� (22)

defined as the negative primitive integral of f . The minus sign is a convention. The 
dynamics of the system is encoded in the shape of V c t( , ): the local minima of the 
potential function correspond to the quasi-stable equilibria, or quasi-stable fixed points, 
around which the system oscillates. In contrast, local maxima correspond to unstable 
fixed points. We note that potential functions are defined up to an additive constant. 
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For the dimensionless variable c t( ) the dimension of the potential function is the inverse 
time.

4.3. Market states dynamics

To quantify the market dynamics while it is in a fixed market state α we restrict the 
estimation of (21) and evaluate only the data points

τ α{ + ∈ }c t c t t( ), ( )� (23)

for each state α. We therefore consider only displacements along the first principal 
component within the market states. No state transitions are allowed. Potential func-
tions estimated this way provide information about the stability of the market states 
and reveal the fixed points.

As we mentioned in section 3.1 we group the states into the three main classes 
according to the hierarchical structure as shown in figure 6. We estimate the potential 
functions for each class A evaluating only the data points

τ{ + ∈ }c t c t t A( ), ( ) .� (24)

Here ∈t A symbolically denotes all time points at which market is in a state of the 
class A. For example the market might be in the state 1 at time t and in the state 2 at 
time τ+t , as these two clusters belong to the same class. We therefore consider only 
displacements within A and allow for state transitions between state of the same class.

5. Results

We show the estimated diffusion function (18) in section 5.1 and discuss the estimated 
potential function (22) in section 5.2. In section 5.3 we take a closer look at the dot-
com bubble. A detailed study of the market states dynamics is presented in section 5.4.

5.1. Diffusion term

To quantify the time dependency of the diffusion function g c t( , ) we estimated the 
second conditional moment (18) on a time window of four trading years (1008 trading 
days) which is moved in steps of two trading months (42 trading days). All together 
we obtain 100 estimates for g c t( , ) which we present in figure 7. As we explained in 
section 4.2, the estimation is only possible for the realized values of c t( ). We therefore 
put all estimated values in a single diagram. We then fit the estimated values by the 
time-independent function

λ= − −g c c c c c( ) ( )( ) ,min max� (25)

which fits our data well, see figure 7. The diffusion function (25) is widely used to 
model the stochastic correlation [37–41], as it limits the values of the correlation to the 
range c c[ , ]min max . From the estimated parameters
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λ = −0.0245 td ,1/2� (26)

=c 0.042,min� (27)

=c 0.918,max� (28)

we obtain the characteristic time scale of the system

λ
= =t

1
1666 trading days,0 2

   � (29)

which turns out to be approximately 5.6 trading years. References [27, 28] show that 
the correlation between industry indices has both a fast and a slow dynamics. While 
the time scale of the fast dynamics is the monthly scale, the slow dynamics time scale 
is at least as slow as five years. This time scale perfectly agrees with the value we find 
for the characteristic time scale (29). For consistency we estimate (18) for the entire 
time series c t( ) at once, as shown in figure 7. We note that we fitted (25) only to the 
data obtained on the sliding window.

5.2. Time evolution of the potential functions in the entire time period

To quantify the time dependence of the drift function f c t( , ) we estimate the first con-
ditional moment (17) on a time window of four trading years (1008 trading days) which 
is moved in steps of two trading months (42 trading days). All together we obtain 100 
estimates for f c t( , ). We then calculate the potential functions (22) which are presented 

Figure 7.  The diffusion function estimated on the sliding window (crosses (+)). 
The circles (⚬) show the estimated diffusion function on the entire time period at 
once. The solid curve shows the fitted function (25). We only use values estimated 
on the sliding windows for the fit.
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in figures 8(a) and (b). The dates mark the time points in the middle of the estimation 
time windows. In contrast to the diffusion function, the drift function turns out to be 
time-dependent. Therefore it is difficult to graphically present many curves in a single 
diagram, as the potential function (22) is defined up to an additive constant. To work 
around this problem we set

=V c t( , ) 0,0� (30)

where c0 denotes the value at which V c t( , ) has its minimum in the first half of its values. 
In this representation the deeper a potential function is, the higher are the boundaries.

Figure 8(a) shows the results from early 1992 to the end of 2004. The distinct time 
periods described in section 3.2 are clearly recognizable in the shape of the potential 
function. It is flat and approximately constant at the beginning. It gets deeper in the 
middle of the period during the turbulent time in 1997–98. The two local minima show 
instabilities on the market. By the end of the period the dot-com crises is reflected in 
the shape of V c t( , ). Its boundaries get higher and it has many deep minima at high 
values of c t( ).

Figure 8(b) shows the results from early 2002 to the end of 2012. Similar to the 
previous case, V c t( , ) is flat and constant during the relatively calm period in the early 
2000s. It changes its shape drastically in the second half of the 2007 and gets a deep 
local minimum around ≈c t( ) 0.4. The boundaries get very high during the late-2000s 
financial crisis. We note that V c t( , ) does not become flat after 2010.

We showed that c t( ) is described by a stochastic process (16) with a time-independent 
diffusion term and a time-dependent drift function. In section 2 we showed that the 
mean correlation coefficient is the dominating variable of the collective market dynam-
ics. The non-stationarity of the potential function is therefore explained by determinis-
tic changes in the collective correlation structure on the market.

Figure 8.  Time evolution of the potential function (22) from early 1992 to the end 
of 2004 (a) and from 2002 to the end of 2012 (b) estimated on a time window of 
four trading years which is moved in steps of two trading months. The dates mark 
the time points in the middle of the estimation time windows. Representation is 
according to equation (30).
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5.3. Zooming into the dot-com bubble

In the previous section we showed that the market evolves in time, switching back and 
forth between different market states. As an example of a state transition we estimate 
V c t( , ) in the period from early 1999 to early 2006. The interval covers the dot-com 
bubble. To achieve higher time resolution we perform the estimation on a time window 
of two trading years (512 trading days), sliding it in steps of one trading month (21 
trading days). Figure 9 shows the time evolution of the estimated potential function. It 
is flat at the beginning where the market is mainly in the states 1 and 2, see figure 5. 
During the crisis the values of c t( ) increase. Therefore the estimated potential function 
moves along the c axis. A deep minimum builds up and the boundaries get higher. The 
market jumps through the states 3, 4 and 6, ending up in state 7 by the end of 2002. 
By the end of 2003 the market settles into state 6 with only short jumps into the states 
4 and 1. The potential function becomes constant but has changed its shape compared 
to the pre-crisis period. The market therefore jumps from a stable state to a turbulent 
state and then down to another stable state.

5.4. Market states dynamics: stability, hierarchy and state transition

In the previous sections we showed that the mean correlation coefficient is described 
by a stochastic process (16) with the time-independent diffusion function (25) and 
the time-dependent drift function. Especially, calm and turbulent periods can be dis-
tinguished by the shape of V c t( , ). To quantify the market dynamics in a given mar-
ket state we estimate the potential function for the data points (23). Thus, we only 
accounted for displacements within a fixed market state.

The time series for the states 3, 4 and 5 are too short for the estimation of (17), 
so we combined the time series of the states 2 and 3 together as well as 4 and 5. We 
denote the resulting states by 2   +   3 and 4   +   5 respectively. As shown in figure 6, these 
pairs consist of states of the same class. Figures 10(a)–(c) shows the resulting potential 
functions for each market state.

Potential functions provide information about the stability of market states. This 
notion of the stability is not due to the time which the market spends occupying a 
certain state, but is given by the dynamics of the market. States 1, 2   +   3, 6 and 8 are 
stable states, as their potential functions have a single deep minimum and therefore 
a clearly defined fixed point. State 8 mainly appears during the latest financial crisis 
and represents a strong collective correlation on the market. In contrast state 7 is very 
unstable. Not only has its potential function two local minima, but it is also the deepest 
one. The correlation structure is non-stationary within the market state 7. The com-
bined state 4   +   5 has a half-open potential function. States 4 and 5 are intermediate 
states between calm and turbulent periods, see figure 5. We note that within stable 
states c t( ) is described by SDE (16) with the diffusion function (25) and a linear drift 
function.

In section 3.1 we grouped the market states into three classes according to the clus-
tering tree, see figure 6. Not all of the market states appear simultaneously in a given 
time interval, as shown in figure 5. The first four years of the analyzed time period are 
dominated by the states 1 and 2, which belong to the first class. In the last four years 
basically only the states 7 and 8 appear, which build the third class. To quantify the 
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hierarchical structure of the states we estimate V c t( , ) for the points (24). We therefore 
account for displacements within the classes including state transitions. The resulting 
potential functions for the three classes are shown in figures 10(a)–(c). These curves 
envelope the potential functions of the market states of the corresponding class.

Similar to the envelopes we estimated V c( ) on the entire time period at once, as 
shown in figure 10(d). The potential function of each market state has a distinct posi-
tion along the first principal component, i.e. a distinct value of c t( ). We therefore con-
clude that, while the market is in a given (stable) state, the mean correlation coefficient 
fluctuates around a mean value, which is defined by the minimum of the potential func-
tion, see figures 10 and 6. As we showed in section 2.2, the movement along the first 
principal component is given by the time evolution of c t( ). Hence the market dynamics 
within a fixed state is given by the movement along the second and higher principal 
components, see figures 3 and 4. Large changes of the mean correlation coefficient yield 
state transitions. The market is therefore ‘hopping’ from state to state in the potential 
landscape, which is shown in figure 10(d). For consistency we calculate the daily steps

� �= + −→ →S t c t c t( ) ( 1) ( )� (31)

of the market and the absolute increments

∆ = + −t c t c t( ) ( 1) ( ) .� (32)

of c t( ). Figures 11(a) and (b) shows the distribution of the steps (31) and the incre-
ments (32) within market states compared to the jumps during a state transition. Both 

Figure 9.  Time evolution of the potential function (22) in the period from early 
1999 to early 2006, which covers the dot-com bubble. The estimation is done on a 
time window of two trading years which is moved in steps of one trading month. 
The dates mark the time points in the middle of the estimation time windows. 
Representation is according to equation (30).
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the steps and especially the increments are on average larger during state transitions 
than within states as we claimed.

6. Conclusion

The combination of geometric data analysis and stochastic methods sheds new light 
on the collective dynamics of complex systems. We applied these techniques to stock 
market data and evaluated the correlation structure on a sliding time window for a 
period of 21 years. The collective market dynamics in terms of the principal compo-
nents is given by the average correlation coefficient. We extracted the underlying 
stochastic process which turns out to have a time-independent stochastic term and a 
time-dependent deterministic term. The latter is represented graphically as a potential 
landscape and provides information on stability and system fixed points. We established 

Figure 10.  (a)–(c) The potential function (22) of the displacements within the 
states (23) (filled circles and triangles). The potential function of displacement 
within the three groups (24) is represented by the envelope line with crosses (+). 
(d) The overall potential landscape V c( ) estimated on the entire time series c t( ) 
at once.
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the connection between distinct historical periods on the market and the time evolu-
tion of the potential function. The non-stationary market dynamics can be attributed 
to changes in the deterministic part of the collective market dynamics. We identified 
quasi-stationary states of the market following [12] and distinguished three main classes 
of market dynamics: calm, intermediate and turbulent states. To quantify the market 
states dynamics we estimated the potential functions, accounting only for displace-
ments within a fixed state. In a given state the average correlation fluctuates around a 
distinct mean value, which defines a fixed point. The market dynamics within a market 
state is given by the movement along higher principal components. State transitions 
are reflected in large changes of the average correlation and correspond to the hopping 
in the potential landscape. Our results are consistent with the random matrix approach 
of [42] and contribute to a better overall understanding of market dynamics. While we 
highlighted the application to financial data in this paper, our approach should prove 
useful for the study of any quasi-stationary complex system.
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