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Abstract

In the paper the dependence structure among durations will be modeled based on copula approach. The advantage of copula models is the possibility to build a variety of dependence structures, based on existing models of the marginal distributions. The purpose is to use this idea in the context of joint duration distributions for the modeling of bivariate survival functions. The paper demonstrates practical implementation of the copula approach. A numerical example is considered, which is based on the data from the German Socio-Economic Panel Study GSOEP. We model the dependence between the duration of time a woman remains childless and the duration of employment among German married women.
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Introduction

Copula functions are proper tools to derive joint distributions given the marginals especially when we work with non-normal distributions. The word “copula” was first used in statistical sense by Sklar in 1959 ([1], [2]). In the last two decades the theory and applications of copulas has been developing rapidly. Several monographs focused on copulas are available, particularly those by Joe [3] and Nelsen [4]. Frees and Valdez [5] provide an introduction for actuaries that summarizes statistical properties and applications. Cherubini et al. [6] focus on financial applications. A number of studies explore models of correlated count variables, e.g. [7], [8]. Recently copula models become increasingly popular for modeling multivariate survival data. Georges at al. [9] and Cameron and Trivedi [10] provide a review of copula applications to multivariate survival analysis.
The aim of this  research work is to use this idea in the context of joint duration distributions for the modeling of bivariate survival functions. In our paper a numerical example is considered, which is based on the data from the German Socio-Economic Panel Study GSOEP. We model the dependence between duration of time a woman remains childless and duration of employment among German married women using the copula approach. Marginal models are fitted and tested using standard univariate survival models, and the dependence parameter is estimated in a sequential second-stage procedure.

Definition and examples of copulas
A copula is a function that links univariate marginals to their joint multivariate distribution or, alternatively, it is a joint distribution function with uniform marginals.

An n-dimensional copula is defined as C(u1,u2,…,un) = Pr[U1 ≤ u1,U2 ≤ u2,…,Un ≤ un] with U1,U2,…,Un being uniform random variables.
For a two-dimensional copula we have C(u1,u2) = Pr[U1 ≤ u1,U2 ≤ u2] with U1,U2 being uniform random variables. Formally:
Definition. A two-dimensional (bivariate) copula is a function C: [0,1]2([0,1], which satisfies the following three properties:

1. C(u, 0) = C(0, u) = 0 for any u([0,1]
2. C(u, 1) = C(1, u) = u for any u([0,1]

3. For all 0 ≤ u11 ≤ u12 ≤ 1 and 0 ≤ u21 ≤ u22 ≤ 1

C([u11, u21] × [u12, u22]) = C(u12, u22) - C(u11, u22) - C(u12, u21) + C(u11, u21) ( 0
The importance of copulas in statistics is described in Sklar’s theorem [1].

Theorem. Let F(x1, x2, …, xn) denote n-dimensional distribution function with marginal distribution functions F1(x1), F2(x2),…, Fn(xn). Then there exists an n-copula C such that for all real (x1, x2, …, xn), F(x1, x2, …, xn)= C(F1(x1) ,F2(x2) , …,Fn(xn) ). If all the margins are continuous, then the copula is unique, and is, in general, determined uniquely on the ranges  of the marginal distribution functions otherwise. Moreover, the converse of the above statement is also true. If we denote the generalized inverses of the marginal distribution functions by F1-1(u1), F2-1 (u2),…, Fn-1 (un), then for every (u1, u2, …, un) in the unit n-cube, C(u1, u2, …, un)= F(F1-1 (u1) ,F2-1 (u2) , …,Fn-1 (un) ).
A large number of copulas have been proposed in the literature, and each of these imposes a different dependence structure on the data. The simplest copula, the product copula, has the form C(u1, u2) = u1·u2. The product copula is important as a benchmark because it corresponds to independence.
The two-dimensional Gaussian (normal) copula is derived from a standard bivariate Gaussian distribution function Φ G by transforming the marginals by the inverse of the standard normal distribution function Φ−1. It is given by C(u1, u2; θ) = ΦG (Φ−1(u1), Φ−1(u2) ; θ). The normal copula is flexible in that it allows for equal degrees of positive and negative dependence. Dependence is measured by the parameter θ((-1,1). 

A copula is a bivariate Archimedean copula if it can be expressed in the form: [image: image2.png]C(uy12:8) = 017 (0(uy) + 0(u2)



, where (:[0,1]([0,() is a generator function with continuous derivatives on (0,1) with properties ((1)=0, ((0)=(, (’(1)<0 (decreasing) and (’’(1)>0 (convex) and [image: image4.png]ot~



 is a pseudo-inverse of the generator. A main characteristic of Archimedean copulas is the fact that all the information about dependence structure is contained in a univariate generator (.
An example of the bivariate Archimedean copula is a Gumbel copula. The Gumbel copula takes the form: [image: image6.png]C(uty u16) = exp (~((~loguy)® + (~loguz)?)?)



. The dependence parameter is restricted to the interval [image: image8.png][1,2).
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 implies independence and [image: image12.png]6 - o



  leads to perfect dependence. Gumbel does not allow negative dependence and exhibits strong right tail dependence and weak left tail dependence.

The Clayton copula takes the form: [image: image14.png]Cluyuz8) = (uy 0 +u,? —1)73



, with the dependence parameter [image: image16.png]


 restricted on the region [image: image18.png](0,)
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 leads to independence. The Clayton copula cannot account for negative dependence. Clayton exhibits strong left tail dependence and weak right tail dependence. Clayton is appropriate for the modeling of “the broken heart syndrome”, when correlation between two events, such as the age of spouses at the moment of death, is the strongest in the left tail of the joint distribution.

In the case of dependence of variables the Pearson’s correlation measure of linear association is often inadequate. Independence always implies zero correlation but the converse is only true for a multivariate Gaussian. Apart from that weak correlations do not imply low dependence. Correlation is not an invariant measure whereas the copula function is invariant.
For deeper investigation of the dependence, one can use measures of concordance: Kendall’s tau and Spearman’s rho. These measure the degree of monotonic dependence as opposed to the Pearson Correlation which simply measures the degree of linear dependence. The Kendall’s tau expresses the probability of concordance minus the probability of discordance. Nelsen [4] shows that the Kendall’s tau may be re-expressed in terms of the copulae as [image: image22.png])—1
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. Also the Spearman’s rank correlation coefficient may be expressed in terms of copulae as [image: image24.png]ps = 12 [[1C (g u2) — wyus ey,



 [11]. 
Survival Copula

Let T denote a survival time with distribution F and density f. The univariate survival function is given by S(t) PT t1F(t). The hazard rate or risk function h(t) is defined as

[image: image1.png]C(uy12:8) = 017 (0(uy) + 0(u2)




It can be interpreted as the instantaneous failure rate assuming that the system has survived to time t. In some cases we can incorporate explanatory variables in the modeling of h(t), and then we have [image: image26.png]


, where h0(t) is called the “baseline” hazard function (proportional hazard rate model).

The previous definitions can be extended to the multivariate case. The multivariate survival function S(t) is defined by
[image: image28.png]S(ty s t) = Pr[Ty > 8y,




,
where T1,...,Tn are n survival times with univariate survival functions Sj(tj).

We have Sj(tj)= S(0,...,0,t j ,0,...,0) , but note that S(t1,..., tn ) (1- F(t1,..., tn ). The density is 
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Multivariate extensions of the hazard rate is given by
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Copulas are natural tools to develop multivariate survival functions from marginal univariate survival functions. A multivariate survival function S can be represented as follows:

S(t1,..., tn) [image: image32.png]


 (S1(t1),..., Sn(tn)),

where [image: image34.png]


 is a copula (Sklar theorem for survival functions). The survival copula [image: image36.png]


 couples the joint survival function to its univariate margins in a manner completely analogous to the way a copula connects the joint distribution function to its margins.
We consider the case n = 2. Let C be the copula that links T1 and T2, the joint density of the times to default of two risks. Then the joint survival function:

S(t1, t2) = P[T1 > t1,T2 > t2 ] =

=1 – F(t1) + 1 – F(t2) – P[T1 > t1] – P[T2 > t2 ] + P[T1 > t1,T2 > t2 ]  =

=1 – F(t1) – F(t2) + F(t1,t2)  = S1(t1) + S2(t2) – 1 + C(F1(t1),F2(t2)) =
=  S1(t1) + S2(t2) – 1 + C(1 – S1(t1),1 – S2(t2)) = [image: image38.png]


 (S1(t1), S2(t2))
Defining  [image: image40.png]Cluv)=u+v—-1+C(1-u1-v)



as the survival copula of T1 and T2 we have S(t1, t2) [image: image42.png]


(S1(t1), S2(t2)). [image: image44.png]


 “couples” the joint survival function to its univariate marginals and provides the means for addressing the joint default risk [10].

Estimation of copulas
Copulas are used to model dependence if the marginal distributions are conditioned on covariates and also, if they are not conditioned. The investigator’s interest can be in efficient estimation of regression parameters and only incidentally in the dependence parameter or only in the nature of dependence in models which do not involve covariates.
Estimation methods are [12]:

· simultaneous estimation of all parameters using the full maximum likelihood (FML),

· sequential 2-step maximum likelihood method (TSML) in which the marginals are estimated in the first step and the dependence parameter is estimated in the second step using the copula after the estimated marginal distributions have been substituted into it,

· generalized method of moments (GMM).

Example
In our paper a numerical example is considered, which is based on the data from the German Socio-Economic Panel Study GSOEP. The data consists of 5535 observations of German women. These women were married between the time period 1945-1996 for at least one year. At the beginning of the marriage they worked but later, they lost their jobs. Apart from that, during the marriage they gave birth to a child. 

We consider the two duration variables: dchild –  the duration of time a woman remains childless until the first child is born (after the marriage started), djob –  the duration of time a woman spends in the state of being employed (from a marriage starting point until losing a job). Both duration spells are not censored. They are parallel and statistically significant dependent (Pearson’s rho = 0.1049, Spearman's rho = 0.3257, Kendall's tau = 0.2922).
Survival times are assumed to be continuous. We replaced the original count data by continued data obtained by adding uniform (0,1) random draws to avoid the convergence problems by models estimation. This  transformation reduces the incidence of ties in the data.  The spells are not censored and have parametric distributions.

The dependence structure among durations will be modeled based on copula approach. The advantage of copula models is the possibility to build a variety of dependence structures, based on existing models of the marginal distributions. In our example, marginal models are fitted and tested using standard univariate survival models. The dependence parameter, however, is estimated in a sequential second-stage procedure.

The covariate used in univariate hazard models to explain the duration of time a woman remains childless is mothage – mother’s age at birth of the first child (in years). The covariate used to explain duration of employment is womage – woman’s age at the beginning of the marriage. The results achieved of parametric univariate models estimation (PH and AFT hazard models under Weibull, Gompertz, lognormal and loglogistic marginal distributions) are presented in Table 1. 
For the risk of the child birth the best fit provides the lognormal AFT model. This model is preferable because of its highest log likelihood value. The positive value of the estimated parameter by wiekmatki mean that time is “decelerator”. The increase of variable independent’s value by one unit causes deceleration of the event which is the child birth. Lognormal distribution can be applied to modeling the data with no monotonic hazard rates, which first increase and then decrease. Estimated hazard function for lognormal distribution  shows that giving birth to a child is most likely 4 years after the marriage. Besides, the longer a woman is married,  the smaller the probability to be a mother. For the risk of exiting employment the best fit provides the lognormal AFT model, as well.

Therefore, in the second step of the sequential 2-step maximum likelihood method we estimated the Gumbel, Clayton and Gauss survival copulas under lognormal marginals. The results are presented in  Table 2. The best fit provides the symmetric Gaussian copula, yet among Archimedean copulas the Clayton copula is better (which exhibits stronger left tail dependence).
Now we separate our dataset into two parts: the first set contains information about marriages got between 1945-1970 and the second set between 1971-1996. There are 2471 observations of women in the first dataset and 3064 observations in the second one. In the first time period both duration of time a woman remains childless and duration of employment are moderately correlated (Pearson’s rho = 0.0765, Spearman's rho = 0.2218, Kendall's tau = 0.1947), in the second period the correlation is stronger (Pearson’s rho = 0.2238, Spearman's rho = 0.4324, Kendall's tau = 0.3908). 
The results of lognormal hazard models estimation for the risk of the child birth and for the risk of exiting employment in two time periods achieved under lognormal marginal distribution assumption are presented in Table 3.
One can see the differences in estimated parameters, the shape of hazard function and the shape of survival function. The risk of deciding on a child was higher in 1945-1970 than in 1971-1996. In the period 1971-1996, the risk of leaving a job is higher due to decreased values in both scale and shape parameter of hazard function.

Having estimated the parameters of margins in the second step we obtain values of association parameters in Gumbel, Clayton and Gauss copulas for two datasets.
The Gaussian copula encounters convergence difficulties. In Archimedean copulas for the same choice of marginal distribution (lognormal) and the copula type, the use of two data sets brings some differences in values of parameter estimates (see Table 4).
In the time period between 1971-1996, values of association parameters are increasing. In comparison with 1945-1970, the Gumbel copula, with stronger right tail dependence and weaker left tail dependence, seems to perform better. This can be explained by higher dependence between the time of motherhood and being passive on the labor market by women in the latter period. These, so called modern women, are involved in pursuing their careers and, in turn, putting off the time of motherhood. It appears that in the former times (1945-1970) women gave birth to a child and stopped their jobs earlier.

Conclusions

The purpose of this research work was to use the copula idea in the context of joint duration distributions for the modeling of bivariate survival functions. The paper demonstrates practical implementation of the copula approach. We modeled the dependence between the duration of time a woman remains childless and the duration of employment among German married women. Marginal models were fitted using univariate survival models, and the dependence parameter was estimated in a sequential second-stage procedure. It can be concluded that the statistical methods applied in the analysis are proper tools for deriving joint distributions given the marginals especially when we work with non-normal distributions.
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Table 1. Results of univariate hazard models estimation for the risk of the child birth and for the risk of exiting employment with graphs of lognormal hazard functions.
	Risk of the child birth

	
	Weibull
	Gompertz
	Lognormal
	Loglogistic

	
	Haz. Ratio
	z
	Haz. Ratio
	z
	Coef.
	z
	Coef.
	z

	mothage
	0.8128582   
	-49.46   
	0.8273195
	-43.84   
	0.0644619    
	44.40   
	0.0682023   
	43.34   

	const
	-
	-
	-
	-
	-0.487666
	-13.03   
	-0.572286   
	-14.48   

	p
	2.391829   
	-
	-
	-
	-
	-
	-
	-

	gamma
	-
	-
	0.2947558   
	53.45
	-
	-
	0.2689445   
	-

	sigma
	-
	-
	-
	-
	0.4696189   
	-
	-
	-

	ln L
	-3680.3054
	-4772.5544
	-3616.5732
	-3674.5685

	Risk of exiting employment

	
	Weibull
	Gompertz
	Lognormal
	Loglogistic

	
	Haz. Ratio
	z
	Haz. Ratio
	z
	Coef.
	z
	Coef.
	z

	womage
	1.033184   
	8.95   
	1.028506   
	7.70   
	-0.027010   
	-7.81   
	-0.027661   
	-8.14   

	const
	-
	-
	-
	-
	2.076698   
	25.57   
	2.009215   
	25.00   

	p
	0.973373   
	-
	-
	-
	-
	-
	-
	-

	gamma
	-
	-
	-0.026155   
	-15.59   
	-
	-
	0.5396752   
	-

	sigma
	-
	-
	-
	-
	0.9453674   
	-
	-
	-

	ln L
	-8261.6913                     
	-8129.257                     
	-7432.476
	-7490.485

	Risk of the child birth [image: image45.emf]0
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Source: own computations.
Table 2. Results of survival copulas estimation under lognormal marginals.

	
	Gumbel
	Clayton
	Gauss

	
	Coef.
	z
	Coef.
	z
	Coef.
	z

	theta
	1.091187   
	108.49   
	0.3053369   
	14.05   
	0.1909393    
	21.07   

	ln L
	51.833405
	115.84009
	202.55611


Source: own computations.
Table 3. Results of lognormal hazard models estimation with graphs of lognormal hazard functions for the risk of the child birth and for the risk of exiting employment in two time periods: 1945-1970 and 1971-1996.

	Risk of the child birth

	
	Lognormal
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	1945-1970
	1971-1996
	

	
	Coef.
	z
	Coef.
	z
	

	mothage
	0.076767   
	36.90   
	0.052205   
	25.48   
	

	const
	-0.805129 
	-15.28   
	-0.175993   
	-3.28   
	

	sigma
	0.453372   
	-
	0.495200   
	-
	

	ln L
	-1551.5329                     
	-2194.2699
	

	Risk of exiting employment

	
	Lognormal
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	1945-1970
	1971-1996
	

	
	Coef.
	z
	Coef.
	z
	

	womage
	-0.02194   
	-3.40   
	-0.025926   
	-7.30   
	

	const
	2.088036   
	14.02   
	1.934497   
	22.78   
	

	sigma
	1.109264   
	-
	0.769450   
	-
	

	ln L
	-3762.4309
	-3544.6177                     
	


Source: own computations.
Table 4. Results of survival copulas estimation under lognormal marginals for two time periods: 1945-1970 and 1971-1996.

	
	1945-1970

	
	Gumbel
	Clayton
	Gauss

	
	Coef.
	z
	Coef.
	z
	Coef.
	z

	theta
	1.048999   
	79.96   
	0.1764744   
	5.79   
	0.1186183
	8.52   

	ln L
	8.124052
	19.603753
	35.014648

	
	1971-1996

	
	Gumbel
	Clayton
	Gauss

	
	Coef.
	z
	Coef.
	z
	Coef.
	z

	theta
	1.23816   
	73.82   
	0.4404079   
	15.03   
	-
	-

	ln L
	139.62477
	138.24931
	no conv.


Source: own computations.
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