Band Structure and Properties of InN and In-rich In1-xGaxN Alloys

Wladek Walukiewicz 2Kin M. Yu 2Sonny X. Li 2,3Rebecca E. Jones 2,3Joel W. Ager III 2Eugene E. Haller 2,3Hai Lu 1William J. Schaff 1

1. Cornell University, 425 Philips Hall, Ithaca, NY 14853, United States
2. Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720, United States
3. University of California, Berkeley, CA 94720, United States


In this presentation we review the results of our recent studies aimed at understanding the electronic structure and its effects on electrical and optical properties of InN and In-rich In1-xGaxN alloys. We have investigated MBE-grown films, unirradiated as well as irradiared with high energy particles. Measurements of the fundamental absorption edge give the value of 0.64 eV for the room temperature energy gap of InN. The low energy gap and a strong kp interaction leads to a small electron effective mass and a distinctly nonparabolic conduction band. In samples with high electron concentrations, a large increase in the absorption edge energy is observed due to the Burstein-Moss shift. In addition to having a narrow gap, InN also has an extremely high electron affinity of 5.8 eV, which places the conduction band edge of this material 0.9 eV below the average energy of dangling bond defects represented by the Fermi level stabilization energy, EFS. This unusual band alignment explains the extreme proclivity for n-type conduction and the large surface electron accumulation densities in InN and In-rich alloys. As grown, undoped InN is always n-type with electron concentrations ranging from mid 1017 cm-3 to as high as 1021 cm-3. A similar range of electron concentrations can be achieved by irradiation with 2 MeV He+ ions. At a sufficiently high dose, the electron concentration saturates. In agreement with the amphoteric defect model the saturation concentration ns, corresponds to Fermi energy pinned at EFS. In In1-xGaxN the conduction band shifts towards the EFS resulting in reduced ns with increasing x. For x>0.66 EFS moves below the conduction band edge and acceptor like defects are preferentially formed, leading to a decrease of electron concentration in irradiated samples. Photoluminescence results show that samples with x<0.6 are two orders of magnitude less sensitive to irradiation damage than standard III-V compounds.


Related papers
  1. Applications of group III-nitride alloys for multijunction solar cells
  2. In-vacancies in Si-doped InN
  3. Irradiation-induced defects in InN and GaN studied with positron annihilation
  4. Compositional modulation in the InxGa1-xN layers; relation to their optical properties
  5. Recombination processes with and without momentum conservation in degenerate InN
  6. Conduction band anisotropy of InN and GaN studied by synchrotron ellipsometry
  7. Surface band bending at n-type and p-type InN by Auger Electron Spectroscopy
  8. Acceptor states in photluminescence of n-InN
  9. Quantized Electron Accumulation, Inversion Layers and Fermi Level-Stabilization in Indium Nitride
  10. Valence band structure of InN from x-ray photoemission studies
  11. InN explained within chemical trends
  12. Resonant tunneling and intersubband absorption in AlN-GaN-superlattices

Presentation: invited oral at E-MRS Fall Meeting 2005, Symposium A, by Wladek Walukiewicz
See On-line Journal of E-MRS Fall Meeting 2005

Submitted: 2005-05-19 18:20
Revised:   2009-06-07 00:44
© 1998-2018 pielaszek research, all rights reserved Powered by the Conference Engine