Search for content and authors
 

Designing biosensors based on semiconductor nanoparticles for an early detection of neurodegenerative diseases.

Bożena Sikora 1Krzysztof Fronc 1Izabela Kamińska 1Anna Baranowska-Korczyc 1Kamil Sobczak 1Kamil Koper 2,3Jakub Włodarczyk 4Piotr Krakowian 5Tomasz Wojciechowski 1Grzegorz M. Wilczyński 4Wojciech Paszkowicz 1Tomasz A. Kowalewski 5Piotr Stępień 2,3Danek Elbaum 1

1. Polish Academy of Sciences, Institute of Physics, Lotnikow 32/46, Warsaw 02-668, Poland
2. Institute of Biochemistry and Biophysics, Polish Academy of Sciences (IBB), Pawińskiego 5a, Warsaw 02-106, Poland
3. Institute of Genetics and Biotechnology, University of Warsaw, Warsaw 02-106, Poland
4. Nencki Institute of Experimental Biology, Pasteura 3, Warsaw 02-093, Poland
5. Institute of Fundamental Technological Research (IPPT), Pawińskiego 5b, Warsaw 02-106, Poland

Abstract

Neurodegenerative diseases are a group of progressive congenital or acquired diseases of the nervous system, in which the primary pathological phenomenon results from cellular dysfunctions. The first behavioral symptoms appear when a significant number of neurons are damaged. The lack of effective drugs is predominantly associated with unavailability of diagnostic tools for an early stage of neurodegenerative disease development.

Our aim is to design a biosensor based on semiconductor nanoparticles ZnO/MgO for an early detection of neurodegenerative diseases. Despite several advantages of nanoparticles (small size, lack of fotobleaching) they have a flaw, due to their relatively low sensitivity to the external environment. Therefore, they require passivation with biologically specific probes. We have covered ZnO/MgO nanoparticles with carboxymethyl-beta-cyclodextrin (CMCD) which serves a role of a linker. The interior of the cyclodextrin is hydrophobic so it can form inclusion complexes with hydrophobic molecules.

We examined FRET between the nanoparticles of ZnO/MgO coated beta-cyclodextrin and organic dye (Nile Red) built into cavities of the cyclodextrin. We studied the effect of temperature on the FRET system. In the first stage, we introduced the FRET complex into HeLa cells. The emission maxima of the FRET nanoparticles inside the cells was 630 nm, while outside the cells was observed to be 610 nm. Thus, we were able to design a prototype of a biosensor sensitive to the local cellular environment. In the next stage, we intend to introduce the FRET complex into neurons.

Clipboard01_1.jpg

Figure 1. HeLa cells with FRET complex. Green: cells autofluorescence (ex. 488 nm), red: FRET complex (ex. 560 nm).

Acknowledgements: The research was partially supported by the European Union within European Regional Development Fund, through grant Innovative Economy (POIG.01.01.02-00-008/08) and was partially supported by the Ministry of Science and Higher Education (Poland) through Grant No. N N518 424036 , andgrant from the Polish National Centre for Research and Development NR13004704.

 

Legal notice
  • Legal notice:
 

Related papers

Presentation: Poster at SMCBS'2011 International Workshop, by Bożena Sikora
See On-line Journal of SMCBS'2011 International Workshop

Submitted: 2011-08-31 18:19
Revised:   2011-08-31 18:46