Thermally Controlled Nanocrystallization in Amorphous Al Alloys

Joseph A. Hamann 2William S. Tong 2Harald Rösner 1John H. Perepezko 2Gerhard Wilde 1

1. Forschungszentrum Karlsruhe, Institute of Nanotechnology, P.O.B. 3640, Karlsruhe D-76021, Germany
2. University of Wisconsin at Madison, Department of Materials Science and Engineering, 1509 University Avenue, Madison, WI 53706, United States

Abstract

In many amorphous Al-alloys, primary crystallization is the key reaction that controls the synthesis of high strength nanostructured bulk volumes comprised of a high density (1021 - 1023 m-3) of nanocrystals (7 - 20 nm) within a residual amorphous matrix. The primary crystallization kinetics, in response to pre-crystallization annealing treatments, are assessed in specific sample types that serve as model systems to evaluate primary nanocrystallization reactions. Differential scanning calorimetry (DSC) studies on powders and melt spun ribbon (MSR) samples based upon thermal cycling and annealing below the glass transition, Tg, demonstrate a strong sensitivity of the primary crystallization onset and reaction enthalpy to thermal history and the as-quenched state. Although the sensitivity of conventional DSC is not sufficient to detect the isothermal heat evolution at 130C, the integrated effect of the heat evolution is clearly detected by DSC as a reduction in primary crystallization enthalpy during continuous heating. Varying heating rates in continuous heating calorimetry measurements demonstrates that a significant amount of crystallization occurs during continuous heating through the primary crystallization following annealing. The kinetics behavior highlights the important role of the as-synthesized amorphous structure, the reaction pathways and transient conditions and their interplay on the evolution of nanoscale microstructures during primary crystallization. The support of the DFG (WI 1899/1-2) and the ARO (DAAD 19-02-1-0245) is gratefully acknowledged.

Related papers
  1. Deformation-induced nanocrystallization in Al-rich metallic glasses
  2. Nanocrystallisation in light-weight amorphous alloys
  3. Microstructure selection in severely deformed Al-base alloys
  4. Crystal refinement by cold rolling in NiTi shape memory alloys

Presentation: oral at E-MRS Fall Meeting 2003, Symposium G, by Joseph A. Hamann
See On-line Journal of E-MRS Fall Meeting 2003

Submitted: 2003-06-17 12:52
Revised:   2009-06-08 12:55
Google
 
Web science24.com
© 1998-2018 pielaszek research, all rights reserved Powered by the Conference Engine