Friday, 10 March

Referaty

Informacje grup badawczych nt. wyników uzyskanych w zimie i planów do wakacji
Friday morning, 10 March, 9:00
9:05 Oral

Dyfraktometryczna analiza mikro- i makronaprężeń w spiekach i kompozytach otrzymanych pod wysokim ciśnieniem i wysoką temperaturą.
Ewa Grzanka ${ }^{1}$, Stanisław Gierlotka ${ }^{1}$, Grzegorz Kalisz ${ }^{1,2}$, Anna Swiderska - Sroda ${ }^{1}$, Svetlana Stelmakh ${ }^{1}$, Bogdan F. Palosz ${ }^{1}$

1. Polish Academy of Sciences, Institute of High Pressure Physics (UNIPRESS), Sokolowska 29/37, Warszawa 01-142, Poland 2. Warsaw University of Technology, Faculty of Materials Science and Engineering (InMat), Wołoska 141, Warszawa 02-507, Poland

E-mail: elesk@unipress.waw.pl

Celem pracy jest analiza mikro i makronaprężeń w spiekach i kompozytach otrzymanych pod wysokim ciśnieniem i wysoką temperaturą. Wartości mikronaprężeń są obliczane z wykorzystaneim plotów Williamsona-Halla. Ocena makronaprężeń przeprowadzana jest na podstawie zmiany położenia lini dyfrakcyjnych. W prezenatcji zostanie pokazane jak zmianiaja się mikronaprężenia tego samego materiału w spieku i kompozycie, a także zmianę wartości mikro i makronaprężeń wraz ze zmianą warunków otrzymania spieków i kompozytów. Przedstawiona zostanie także część teoratyczna, wyjaśniająca dlaczego "widzimy" mikro i makronaprężenai na dyfraktogramie.

9:25 Oral
Morphology of Al doped zinc oxide obtained by the vapour condensation method

Tomasz Strachowski ${ }^{1,3}$, Witold Lojkowski ${ }^{1}$, Ewa Grzanka1,2, Roman Pielaszek ${ }^{1}$, Adam Presz ${ }^{1}$, Robert R. Piticescu ${ }^{4}$, Claude J. Monty ${ }^{5}$

1. Polish Academy of Sciences, Institute of High Pressure Physics (UNIPRESS), Sokolowska 29/37, Warszawa 01-142, Poland 2. Warsaw University, Faculty of Physics, Hoza 69 Str., Warszawa 00-681, Poland 3. Warsaw University of Technology, Faculty of Materials Science and Engineering (InMat), Wołoska 141, Warszawa 02-507, Poland 4. Institute for Non-ferrous and Rare Metals, 102 Biruintei Blvd., Pantelimon 73957, Romania 5. CNRS laboratoire Procedes, Materiaux et Energie solaire (PROMES), BP5 Odeillo, Font Romeu 66120, France

E-mail: tomasz@unipress.waw.pl

The aim of this work is description of morphology of Aldoped ZnO obtained by the vapour condensation method. The morphology was analysed by complementary methods. Shape and grain size were analysed by SEM, XRD and BET. Density measurements used helium pycnometr method.

Dependence of density and lattice parameters on Al concentration is presented.
9:55 Oral

Nasze wyniki, zdania i sposoby ich realizacji

Witold Lojkowski

Polish Academy of Sciences, Institute of High Pressure Physics (UNIPRESS), Sokolowska 29/37, Warszawa 01-142, Poland

> E-mail: wl@unipress.waw.pl

W wyniku pracy ostatnich lat, mamy osiagnięcia w zakresie charakteryzacji nanoproszków i zarazem powstaja nowe pytania i zadania.

Osiągnięcia:

Procedura pomiaru gętości nanoproszków i jej stosowanie do:

- oceny jakości wytworzonych proszków.
- Badania domieszkowania nanoproszków

Procedury określenia rozkładu wielkości ziarna w różnych kierunkach krystalograficznych
Analizy składu fazowego i stałych sieci na wysokim poziomie.
Wyniki wskazujące na wpływ stanu powierzchni na stałe sieciowe nanoproszków.

Dalsze zadania:

- Osiągnięcie znacznej liczby cytowań naszych prac
- Opracowanie procedur analizy naprezżeń w nanoziarenkach
- Opracowanie metod ilościowej analizy zdjęć mikroskopowych nanoproszków (obietnica grantowa)
- Uzyskanie finansowania tej dziedziny: nowy sprzęt, granty, zlecenia zewnętrzne.

Wynikiem spotkania powinno być, między innymi:

- Dopracowanie listy osiagnięć
- Uzgodnienie listy zajecć
- Określenie sposobu ich realizacji.

| 10:20 | Oral |
| :--- | :--- | :--- |
| Badania
 metodami dyfraktometrycznymi | |

Stanisław Gierlotka, Bogdan F. Palosz, Svetlana Stelmakh, Ewa Grzanka

Polish Academy of Sciences, Institute of High Pressure Physics (UNIPRESS), Sokolowska 29/37, Warszawa 01-142, Poland

> E-mail: xray@unipress.waw.pl

Podstawy teoretyczne i wstępne wyniki analizy drgań atomów na powierzchni i we wnętrzu ziaren SiC o rozmiarach nanometrowych wykonane w oparciu o neutronowe pomiary dyfrakcyjne.

| Modelling of Grain Growth in nano-polycrystalline |
| :--- | materials

Tomasz Wejrzanowski

Warsaw University of Technology, Faculty of Materials Science and Engineering (InMat), Wołoska 141, Warszawa 02-507, Poland

E-mail: twejrzanowski@inmat.pw.edu.pl

Nano-polycrystalline materials exhibit distinctly different mechanical and physical properties, which in particular are related to the high density of the grain boundaries and their geometrical and physical parameters as well. Despite that fact, thermal stability of such materials is significantly reduced in comparison to the materials with grains of micrometre size.

In these studies the influence of the grain size homogeneity and their crystallographic orientations on grain growth process were simulated.

The results show that both, normal and abnormal grain growth is possible for particular internal and external conditions. In this context the practical aspects, especially in design of nanomaterials obtained by different fabrication techniques, are discussed.

Dyskusja

Oczekiwania i propozycje grup: zarówno naukowe jak organizacyjne
Friday morning, 10 March, 11:10

